1. Let X be a non-empty set and for all $x_{1}, x_{2} \in X$ let $d\left(x_{1}, x_{2}\right)=0$ if $x_{1}=x_{2}$ and $d\left(x_{1}, x_{2}\right)=1$ otherwise. Show (X, d) is a metric space.
2. Show that if $(V,\|\cdot\|)$ is a normed vector space then it is a metric space under $d\left(v_{1}, v_{2}\right)=\left\|v_{1}-v_{2}\right\|$.
3. Show that $\|\cdot\|_{1}$ is a norm on \mathbb{R}^{n} for all n.
