Suppose V is a vector space over \mathbb{R} and suppose that for all $x, y \in V$ there is a real number called the inner product of x, y denoted $\langle x, y\rangle$ satisfying the following properties:

1. $\langle x, y\rangle=<y, x\rangle$ for all $x, y \in V$
2. $\left\langle c x_{1}+x_{2}, y\right\rangle=c\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle$ for all $x_{1}, x_{2}, y \in V$ and $c \in \mathbb{R}$.
3. $\langle x, x\rangle \geq 0$ for all $x \in V$ with $\langle x, x\rangle=0$ if and only if $x=\overrightarrow{0}$.
4. Show the following known as the Cauchy-Schwarz Theorem:

$$
<x, y>^{2} \leq<x, x><y, y>
$$

Hint we proved it in class for \mathbb{R}^{n} and the proof is basically the same.
2. Show that $\|x\|=\sqrt{\langle x, x\rangle}$ is a norm on V. (Hint: Use Cauchy-Schwarz).

