Suppose V is a vector space over \mathbb{R} and suppose that for all $x, y \in V$ there is a real number called the inner product of x, y denoted $\langle x, y \rangle$ satisfying the following properties:

- 1. $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in V$
- 2. $< cx_1 + x_2, y > = c < x_1, y > + < x_2, y >$ for all $x_1, x_2, y \in V$ and $c \in \mathbb{R}$.
- 3. $\langle x, x \rangle \ge 0$ for all $x \in V$ with $\langle x, x \rangle = 0$ if and only if $x = \vec{0}$.
- 1. Show the following known as the Cauchy-Schwarz Theorem:

$$< x, y >^2 \le < x, x > < y, y >$$

Hint we proved it in class for \mathbb{R}^n and the proof is basically the same.

2. Show that $||x|| = \sqrt{\langle x, x \rangle}$ is a norm on V. (Hint: Use Cauchy-Schwarz).