- 1. Show $||\cdot||_1$ is a norm on $L^1([a, b])$.
- 2. For all $f, g \in L^2([a, b])$ define $\langle f, g \rangle = \int_a^b fg$.
 - (a) Show $\langle \cdot, \cdot \rangle$ is an inner product.
 - (b) Show that $||\cdot||_2$ is a norm.
- 3. (a) Give an example of a function $f \in L^1((0,1))$ that is not in $L^2((0,1))$.
 - (b) Give an example of a function $f \in L^2([0,1])$ that is not in c([0,1]) set of continuous functions on [0,1].
 - (c) Give an example of a function $f \in L^2((1,\infty))$ that is not in $L^1((1,\infty))$.