- 1. Suppose that d_1, d_2 are two metrics on X and there exists $0 < c_1 \le c_2$ such that for all $x, y \in X$, $c_1d_1(x, y) \le d_2(x, y) \le c_2d_1(x, y)$. Show:
 - (a) A set U is open with respect to d_1 if and only if it is open with respect to d_2 .
 - (b) A sequence x_n converges to x with respect to d_1 if and only if x_n converges to x with respect to d_2 .

Note d_1 and d_2 are said to be equivalent metrics.

- 2. Consider the vector space \mathbb{R}^n .
 - (a) Show that for all $v \in \mathbb{R}^n$, $||v||_u \le ||v||_1 \le n ||v||_u$ and $||v||_u \le ||v||_2 \le \sqrt{n} ||v||_u$
 - (b) Show that the metrics corresponding $||\cdot||_1, ||\cdot||_2$ and $||\cdot||_u$ are equivalent.
- 3. Consider the vector space c([a, b]).
 - (a) Show that for all $f \in c([a, b]), ||f||_1 \le (b a) ||f||_u$.
 - (b) Suppose a = 0 and b = 1. Show by examples that it is possible for $||f||_1 = 1$ but $||f||_u$ to be arbitrarily large. (i.e. for all $N \in \mathbb{N}$ there exists $f \in c([0,1])$ such that $||f||_1 = 1$ but $||f||_u \ge N$.)
- 4. For this problem you can use what you know about trigonometric functions from calculus even stuff we have not proved. (But you could prove them: for example to show that $\cos(\pi/2) = 2\cos^2(\pi/4) 1$ and thus $\cos(\pi/4) = \pm 1/\sqrt{2}$ and then using the fact that $\cos(x)$ is positive on $(0, \pi/2)$ to show $\cos(\pi/4) = 1/\sqrt{2}$. Similarly for $\sin(\pi/4)$. The point is you don't have to prove these things. But I digress. Anyway what were we talking about. Oh yeah) Find $d(\sin(x), \cos(x))$ using the metrics $||\cdot||_1, ||\cdot||_2$, and $||\cdot||_u$ on $c([0, \pi])$.