1. Suppose that $d_{1}, d_{2}$ are two metrics on $X$ and there exists $0<c_{1} \leq c_{2}$ such that for all $x, y \in X$, $c_{1} d_{1}(x, y) \leq d_{2}(x, y) \leq c_{2} d_{1}(x, y)$. Show:
(a) A set $U$ is open with respect to $d_{1}$ if and only if it is open with respect to $d_{2}$.
(b) A sequence $x_{n}$ converges to $x$ with respect to $d_{1}$ if and only if $x_{n}$ converges to $x$ with respect to $d_{2}$.

Note $d_{1}$ and $d_{2}$ are said to be equivalent metrics.
2. Consider the vector space $\mathbb{R}^{n}$.
(a) Show that for all $v \in \mathbb{R}^{n},\|v\|_{u} \leq\|v\|_{1} \leq n\|v\|_{u}$ and $\|v\|_{u} \leq\|v\|_{2} \leq \sqrt{n}\|v\|_{u}$
(b) Show that the metrics corresponding $\|\cdot\|_{1},\|\cdot\|_{2}$ and $\|\cdot\|_{u}$ are equivalent.
3. Consider the vector space $c([a, b])$.
(a) Show that for all $f \in c([a, b]),\|f\|_{1} \leq(b-a)\|f\|_{u}$.
(b) Suppose $a=0$ and $b=1$. Show by examples that it is possible for $\|f\|_{1}=1$ but $\|f\|_{u}$ to be arbitrarily large. (i.e. for all $N \in \mathbb{N}$ there exists $f \in c([0,1])$ such that $\|f\|_{1}=1$ but $\left.\|f\|_{u} \geq N.\right)$
4. For this problem you can use what you know about trigonometric functions from calculus even stuff we have not proved. (But you could prove them: for example to show that $\cos (\pi / 2)=$ $2 \cos ^{2}(\pi / 4)-1$ and thus $\cos (\pi / 4)= \pm 1 / \sqrt{2}$ and then using the fact that $\cos (x)$ is positive on $(0, \pi / 2)$ to show $\cos (\pi / 4)=1 / \sqrt{2}$. Similarly for $\sin (\pi / 4)$. The point is you don't have to prove these things. But I digress. Anyway what were we talking about. Oh yeah) Find $d(\sin (x), \cos (x))$ using the metrics $\|\cdot \cdot\|_{1},\|\cdot\|_{2}$, and $\|\cdot\|_{u}$ on $c([0, \pi])$.

