For each assume (X, d) is a metric space.

- 1. In a previous homework we showed that d(x, y) = 0 if x = y and d(x, y) = 1 otherwise is a metric. Find all open sets of X with this metric.
- 2. Show that a sequence x_n in X converge to x in X if and only if for all open sets U in X if $x \in U$ then $x_n \in U$ eventually.
- 3. Show a set $F_A \subseteq A \subseteq X$ is closed subset of A if and only if there exists a closed subset F_X of X such that $F_A = F_X \cap A$.
- 4. Suppose $A \subseteq B \subseteq X$. Show that if A is open in B which is open in X then A is open in X.