- 1. Give the definition of a set $U \subseteq \mathbb{R}$ being an **open** set.
- 2. State the Intermediate Value Theorem (technically the Bolzano Intermediate Value Theorem).
- 3. State the definition of an interval (not necessarily of finite length).
- 4. Show if I is an interval and $f: I \to \mathbb{R}$ is continuous then f(I) is an interval.
- 5. Use the Bolzano-Weierstrass Theorem to show that if $f: K \to \mathbb{R}$ is a continuous function where $K \subseteq \mathbb{R}$ is compact then f(K) is compact. (Hint: Remember that $f: D \to \mathbb{R}$ is continuous at $c \in D$ if and only if for every sequence $\{c_n\} \subseteq D$ that converges to $c, \{f(c_n)\}$ converges to f(c).
- 6. Show if $a, b \in \mathbb{R}$ with a < b and $f : [a, b] :\to \mathbb{R}$ continuous then there exists $m, M \in \mathbb{R}$ with $m \leq M$ (note *m* could equal *M* so the "interval" would contain one element) such that f([a, b]) = [m, M].