1. Finish the proof that if $\alpha, \beta, \gamma \in[a, b]$ and $f \in \mathcal{R}[a, b]$, then:

$$
\int_{\alpha}^{\gamma} f=\int_{\alpha}^{\beta} f+\int_{\beta}^{\gamma} f
$$

2. Suppose that $f \in \mathcal{R}[a, b]$ and $a=x_{0}<x_{1}<x_{2}<\ldots<x_{n-1}<x_{n}=b$. Then show that $f \in \mathcal{R}\left[x_{i-1}, x_{i}\right]$ for all $1 \leq i \leq n$ and:

$$
\int_{a}^{b} f=\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f
$$

3. Suppose $f, F:[a, b] \rightarrow \mathbb{R}$ with F differentiable and $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$ and $f \in \mathcal{R}[a, b]$. Suppose $\alpha, \beta \in[a, b]$ show:

$$
\int_{\alpha}^{\beta} f=F(\beta)-F(\alpha)
$$

4. Let $F:[0,3] \rightarrow \mathbb{R}$ defined by:

$$
F(x)= \begin{cases}0 & \text { if } 0 \leq x \leq 1 \\ x-1 & \text { if } 1 \leq x \leq 2 \\ 1 & \text { if } 2 \leq x \leq 3\end{cases}
$$

(a) Prove that $F \in c([0,3])$
(b) Find an $f:[0,3] \rightarrow \mathbb{R}$ such that $F^{\prime}(x)=f(x)$ for all but a finite set.
(c) Find $\int_{0}^{3} f$.
(d) Find $\int_{0}^{3} F$.

