1. Suppose $f \in \mathcal{R}[a, b]$ and $m, M \in \mathbb{R}$.
(a) Suppose $m \leq f(x) \leq M$ for all $x \in[a, b]$ show $m(b-a) \leq \int_{a}^{b} f(x) \leq M(b-a)$.
(b) Suppose $|f(x)| \leq M$ for all $x \in[a, b]$ show $\left|\int_{a}^{b} f\right| \leq M(b-a)$
(c) Suppose $|f(x)| \leq M$ for all $x \in[a, b]$ and $\alpha, \beta \in[a, b]$ show $\left|\int_{\alpha}^{\beta} f\right| \leq M|\beta-\alpha|$
2. For each of the following determine (with proof) if f is Lipschitz continuous on the given domain.
(a) $f(x)=x^{2}$ on $[0,1]$
(b) $f(x)=x^{2}$ on $(1, \infty)$
(c) $f(x)=\sqrt{x}$ on $[1,2]$
(d) $f(x)=\sqrt{x}$ on $(1, \infty)$
3. Let $f(x)=\frac{1}{x}$. For any positive number $a \in \mathbb{R}$. Do the following:
(a) Prove $f \in \mathcal{R}[\min (a, 1), a+1]$
(b) Define $\ln (x)=\int_{1}^{x} f$ (this is all you know about natural log so don't sneak rumors you have heard about it). Prove $\ln (x)$ is continuous on $(0, \infty)$.
(c) Prove that $\ln (x)$ is increasing on $(0, \infty)$
(d) Let $a>0$ be fixed for now. Let $g(x)=\ln (x)+\ln (a)$ and $h(x)=\ln (a x)$. Show $h^{\prime}(x)=g^{\prime}(x)$ for all $x \in(0, \infty)$.
(e) Argue that in the above $h(x)=g(x)$ for all $x \in(0, \infty)$
(f) Argue from the above that for all $a, b \in(0, \infty), \ln (a b)=\ln (a)+\ln (b)$.
(g) Prove that $\ln (x)$ is injective $(1-1)$ on $(0, \infty)$
(h) Let $B=\ln ((0, \infty))$ be the image of f and let $\exp (x)$ be the inverse function of $\ln (x)$ on $(0, \infty)$ (one exists since $\ln (x)$ is injective). So $\exp : B \rightarrow(0, \infty)$. Prove that $\exp (x)$ is continuous
(i) Prove that $\exp (x)$ is increasing.
(j) Prove for all $a, b \in B, \exp (a+b)=\exp (a) \exp (b)$.
