- 1. Suppose $f \in \mathcal{R}[a, b]$ and $m, M \in \mathbb{R}$.
 - (a) Suppose $m \le f(x) \le M$ for all $x \in [a, b]$ show $m(b-a) \le \int_a^b f(x) \le M(b-a)$.
 - (b) Suppose $|f(x)| \le M$ for all $x \in [a, b]$ show $\left| \int_{a}^{b} f \right| \le M(b a)$ (c) Suppose $|f(x)| \le M$ for all $x \in [a, b]$ and $\alpha, \beta \in [a, b]$ show $\left| \int_{\alpha}^{\beta} f \right| \le M |\beta - \alpha|$
- 2. For each of the following determine (with proof) if f is Lipschitz continuous on the given domain.
 - (a) $f(x) = x^2$ on [0, 1]
 - (b) $f(x) = x^2$ on $(1, \infty)$
 - (c) $f(x) = \sqrt{x}$ on [1, 2]
 - (d) $f(x) = \sqrt{x}$ on $(1, \infty)$
- 3. Let $f(x) = \frac{1}{x}$. For any positive number $a \in \mathbb{R}$. Do the following:
 - (a) Prove $f \in \mathcal{R}[\min(a, 1), a + 1]$
 - (b) Define $\ln(x) = \int_{1}^{x} f$ (this is all you know about natural log so don't sneak rumors you have heard about it). Prove $\ln(x)$ is continuous on $(0, \infty)$.
 - (c) Prove that $\ln(x)$ is increasing on $(0, \infty)$
 - (d) Let a > 0 be fixed for now. Let $g(x) = \ln(x) + \ln(a)$ and $h(x) = \ln(ax)$. Show h'(x) = g'(x) for all $x \in (0, \infty)$.
 - (e) Argue that in the above h(x) = g(x) for all $x \in (0, \infty)$
 - (f) Argue from the above that for all $a, b \in (0, \infty)$, $\ln(ab) = \ln(a) + \ln(b)$.
 - (g) Prove that $\ln(x)$ is injective (1-1) on $(0,\infty)$
 - (h) Let $B = \ln((0,\infty))$ be the image of f and let $\exp(x)$ be the inverse function of $\ln(x)$ on $(0,\infty)$ (one exists since $\ln(x)$ is injective). So $\exp: B \to (0,\infty)$. Prove that $\exp(x)$ is continuous
 - (i) Prove that $\exp(x)$ is increasing.
 - (j) Prove for all $a, b \in B$, $\exp(a + b) = \exp(a) \exp(b)$.