1. Show $\ln (2)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$
2. More fun with $\exp (x)$ and $\ln (x)$. For this problem you may use any of the results in the previous homework (whether you proved it or not).
(a) Let $q \in \mathbb{Q}$ and $a>0$ show that $\ln \left(a^{q}\right)=q \ln (a)$.
(b) Let $q \in \mathbb{Q}$ show that $\exp (q)=e^{q}$.
(c) Suppose $a>0$ define $a^{x}=\exp (x \ln (a))$. We (I mean in real analysis I) have previously defined a^{q} when $q \in \mathbb{Q}$, show this definition is consistent with that definition.
(d) Let $a>0$ and define $f(x)=a^{x}$, show that f is differentiable on $(-\infty, \infty)$ and find $f^{\prime}(x)$.
(e) Following what we did in class with Taylor's theorem, to show for any $b \in \mathbb{R}$:

$$
\exp (b)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{b^{n}}{n!}
$$

Hint: I assume that in Math 360 you proved that for all $x \in \mathbb{R}, \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$. In any case you may use this fact.
(f) Show $\frac{8}{3} \leq e$.
3. For all $n \in \mathbb{N}$ define $f_{n}:[0,1] \rightarrow \mathbb{R}$ where:

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } x \in\left[0, \frac{1}{n}\right] \\ 2 n-n^{2} x & \text { if } x \in\left(\frac{1}{n}, \frac{2}{n}\right) \\ 0 & \text { if } x \in\left[\frac{2}{n}, 1\right]\end{cases}
$$

(a) Draw f_{n} for a $n=1,10,100$.
(b) Find f such that $f_{n} \rightarrow f$ pointwise.
(c) Does $\int_{0}^{1} f_{n} \rightarrow \int_{0}^{1} f$?
(d) Are f_{n} and f continuous?
(e) Does f_{n} converge to f uniformly?

