1. Last time I said you may assume that for all $x \in \mathbb{R}, \lim _{x \rightarrow \infty} \frac{x^{n}}{n!}=0$. Now you will prove it. Fix $x \in \mathbb{R}$ and let $a_{n}=\frac{|x|^{n}}{n!}$. Do the following:
(a) Show that a_{n} is eventually decreasing. (Hint: look at the ratio of successive terms)
(b) Prove that a_{n} converges. (Hint: Use a theorem from 360)
(c) Prove $\lim _{n \rightarrow \infty} a_{n}=0$. (Hint: Use limit laws)
(d) Finally argue that $\lim _{x \rightarrow \infty} \frac{x^{n}}{n!}=0$.
2. For this problem you may use any of the results in the previous homework (whether you proved it or not). Remember for $a>0$ and $x \in \mathbb{R}$, we defined $a^{x}=\exp (x \ln (a))$.
(a) Show that if $a>0$ and $x, y \in \mathbb{R}$ show that $a^{x+y}=a^{x} a^{y}$.
(b) Show that if $a>0$ and $x \in \mathbb{R}$ then $\ln \left(a^{x}\right)=x \ln (a)$.
(c) Show that if $a>0$ and $x, y \in \mathbb{R}$ show that $a^{x y}=\left(a^{x}\right)^{y}$.
(d) Let $a \in \mathbb{R}$ and define $f(x)=x^{a}$. Show that f is differentiable on $(0, \infty)$, and find $f^{\prime}(x)$.
3. For each $n \in \mathbb{N}$ let $f_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}$. Show that for $M>0, f_{n} \rightarrow \exp$ uniformly on $[-M, M]$.
