- 1. Last time I said you may assume that for all $x \in \mathbb{R}$, $\lim_{x \to \infty} \frac{x^n}{n!} = 0$. Now you will prove it. Fix $x \in \mathbb{R}$ and let $a_n = \frac{|x|^n}{n!}$. Do the following:
 - (a) Show that a_n is eventually decreasing. (Hint: look at the ratio of successive terms)
 - (b) Prove that a_n converges. (Hint: Use a theorem from 360)
 - (c) Prove $\lim_{n \to \infty} a_n = 0$. (Hint: Use limit laws)

(d) Finally argue that
$$\lim_{x \to \infty} \frac{x^n}{n!} = 0.$$

- 2. For this problem you may use any of the results in the previous homework (whether you proved it or not). Remember for a > 0 and $x \in \mathbb{R}$, we defined $a^x = \exp(x \ln(a))$.
 - (a) Show that if a > 0 and $x, y \in \mathbb{R}$ show that $a^{x+y} = a^x a^y$.
 - (b) Show that if a > 0 and $x \in \mathbb{R}$ then $\ln(a^x) = x \ln(a)$.
 - (c) Show that if a > 0 and $x, y \in \mathbb{R}$ show that $a^{xy} = (a^x)^y$.
 - (d) Let $a \in \mathbb{R}$ and define $f(x) = x^a$. Show that f is differentiable on $(0, \infty)$, and find f'(x).

3. For each
$$n \in \mathbb{N}$$
 let $f_n(x) = \sum_{k=0}^n \frac{x^k}{k!}$. Show that for $M > 0$, $f_n \to \exp$ uniformly on $[-M, M]$.