- 1. For $x, y \in \mathbb{R}$ find C(x+y) and C(-x) in terms of S(x) and C(x).
- 2. Show that if f(x) is differentiable on \mathbb{R} and for all $x \in \mathbb{R}$, f'(x) = f(x) and f(0) = 1 then $f(x) = \exp(x)$. (This is a homework from last week but no one got it, it should now be easy.)

3. Let
$$\cosh(x) = \frac{\exp(x) + \exp(-x)}{2}$$
 and $\sinh(x) = \frac{\exp(x) - \exp(-x)}{2}$.

- (a) Show that $\cosh'(x) = \sinh(x)$ and $\sinh'(x) = \cosh(x)$ with $\cosh(0) = 1$ and $\sinh(0) = 0$.
- (b) Show that $\cosh^2(x) \sinh^2(x) = 1$ for all $x \in \mathbb{R}$.
- (c) Show that if f is twice differentiable on \mathbb{R} with f''(x) = f(x) then there exists α and β such that $f(x) = \alpha \cosh(x) + \beta \sinh(x)$. Also find α and β in terms of f.
- (d) Find $\sinh(x+y)$ and $\cosh(x+y)$ for $x, y \in \mathbb{R}$ in terms of $\sinh(x)$ and $\cosh(x)$.
- (e) Determine if sinh and cosh are odd, even or neither.