1. For $x, y \in \mathbb{R}$ find $C(x+y)$ and $C(-x)$ in terms of $S(x)$ and $C(x)$.
2. Show that if $f(x)$ is differentiable on \mathbb{R} and for all $x \in \mathbb{R}, f^{\prime}(x)=f(x)$ and $f(0)=1$ then $f(x)=\exp (x)$. (This is a homework from last week but no one got it, it should now be easy.)
3. Let $\cosh (x)=\frac{\exp (x)+\exp (-x)}{2}$ and $\sinh (x)=\frac{\exp (x)-\exp (-x)}{2}$.
(a) Show that $\cosh ^{\prime}(x)=\sinh (x)$ and $\sinh ^{\prime}(x)=\cosh (x)$ with $\cosh (0)=1$ and $\sinh (0)=0$.
(b) Show that $\cosh ^{2}(x)-\sinh ^{2}(x)=1$ for all $x \in \mathbb{R}$.
(c) Show that if f is twice differentiable on \mathbb{R} with $f^{\prime \prime}(x)=f(x)$ then there exists α and β such that $f(x)=\alpha \cosh (x)+\beta \sinh (x)$. Also find α and β in terms of f.
(d) Find $\sinh (x+y)$ and $\cosh (x+y)$ for $x, y \in \mathbb{R}$ in terms of $\sinh (x)$ and $\cosh (x)$.
(e) Determine if sinh and cosh are odd, even or neither.
