1. Consider the power series: $\sum_{k=1}^{\infty} k x^{k}$.
(a) Find its radius of convergence
(b) In the interior of the interval of convergence, give a closed form expression (one without summation) for what the function the series converges to.
(c) Find the sum of $\sum_{k=1}^{\infty} \frac{k}{2^{k}}$.
2. Consider the power series: $\sum_{k=1}^{\infty} k^{2} x^{k}$.
(a) Find its radius of convergence
(b) In the interior of the interval of convergence, give a closed form expression (one without summation) for what the function the series converges to.
(c) Find the sum of $\sum_{k=1}^{\infty} \frac{k^{2}}{3^{k}}$.
3. Let X be a nonempty set and define:

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

Show (X, d) is a metric space.

