- 1. Show that if $(V, ||\cdot||)$ is a normed vector space then it is a metric space under $d(v_1, v_2) = ||v_1 v_2||$.
- 2. Show that $||{\cdot}||_1$ is a norm on \mathbb{R}^n for all n .
- 3. Suppose $\vec{x} \in \mathbb{R}^n$ show:
- (a) $||\vec{x}||_{u} \leq ||\vec{x}||_{1} \leq n||\vec{x}||_{u}$ (b) $||\vec{x}||_{u} \leq ||\vec{x}||_{2} \leq \sqrt{n}||\vec{x}||_{u}$ 4. Let $a \in \mathbb{R}^{\infty}$ with $\mathbf{a} = \{a_{n}\}_{n=1}^{\infty}$

$$a_n = \begin{cases} 5^{-n} & \text{if } n \text{ is odd} \\ 2^{-n} & \text{if } n \text{ is even} \end{cases}$$

Find:

- (a) $||\mathbf{a}||_1$
- (b) $||\mathbf{a}||_2$
- (c) $||\mathbf{a}||_u$

Hint: If a series converges absolutely then the series can be summed in any order.