1. Show that if $(V,\|\cdot\|)$ is a normed vector space then it is a metric space under $d\left(v_{1}, v_{2}\right)=\left\|v_{1}-v_{2}\right\|$.
2. Show that $\|\cdot\|_{1}$ is a norm on \mathbb{R}^{n} for all n.
3. Suppose $\vec{x} \in \mathbb{R}^{n}$ show:
(a) $\|\vec{x}\|_{u} \leq\|\vec{x}\|_{1} \leq n| | \vec{x} \|_{u}$
(b) $\|\vec{x}\|_{u} \leq\|\vec{x}\|_{2} \leq \sqrt{n}\|\vec{x}\|_{u}$
4. Let $a \in \mathbb{R}^{\infty}$ with $\mathbf{a}=\left\{a_{n}\right\}_{n=1}^{\infty}$

$$
a_{n}= \begin{cases}5^{-n} & \text { if } n \text { is odd } \\ 2^{-n} & \text { if } n \text { is even }\end{cases}
$$

Find:
(a) $\|\mathbf{a}\|_{1}$
(b) $\|\mathbf{a}\|_{2}$
(c) $\|\mathbf{a}\|_{u}$

Hint: If a series converges absolutely then the series can be summed in any order.

