1. Show that $\left(L^{1},\|\cdot\|_{1}\right)$ is a normed vector space. Remember that L^{1} consists of equivalence classes so that is why $\|f\|_{1}$ is 0 only when f is 0 in the sense that it is in the same equivalence class as 0 .
2. Show that for $\vec{a}, \vec{b} \in l^{2}(\mathbb{R})$ the function $\langle\vec{a}, \vec{b}\rangle=\sum_{k=1}^{\infty} a_{k} b_{k}$ is an inner product.
3. Show that for $f, g \in L^{2}([a, b])$ the function $\langle f, g\rangle=\int_{a}^{b} f g$ is an inner product.
