- 1. Show $\cos'(x) = -\sin(x)$
- 2. Remember now that sin and cos are the same as what we called S and C so you can use all the properties we showed for S and C. Define $\tan(x) = \frac{\sin(x)}{\cos(x)}$.
 - (a) Show $tan(x): (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ is an increasing, continuous, bijection.
 - (b) Define $\arctan(x): \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$ to be the functional inverse of $\tan(x)$. Show it is an increasing, continuous, bijection.
 - (c) Find $\arctan'(x)$.

Note for topology students. Notice that these are the functions we needed (but didn't have) in topology class to show that for all a < b, (a, b) is homeomorphic to \mathbb{R} with both having the usual topology. So your topology class is now complete.

- 3. Show if $\sum_{k=1}^{\infty} a_k$ converges then $\lim_{k \to \infty} a_k = 0$.
- 4. Suppose for some $M>0,\ 0\leq Mb_k\leq a_k$ eventually. Show that if $\sum b_k$ diverges, then $\sum a_k$ diverges.
- 5. Suppose that $\left|\frac{a_{k+1}}{a_k}\right| > 1$ eventually. Show that $\sum a_k$ diverges.