1. Consider $\vec{x}=(1,-2,0,1)$ and $\vec{y}=(2,0,-3,1)$ to be elements of the inner product space on \mathbb{R}^{4}.
(a) Find $|\langle\vec{x}, \vec{y}\rangle|$.
(b) What upper bound does Cauchy-Schwarz give for this quantity?
2. Consider $f(x)=x$ and $g(x)=\exp (x)$ to be elements of the inner product space $L^{2}([0,1])$.
(a) Find $|\langle f, g\rangle|$.
(b) What upper bound does Cauchy-Schwarz give for this quantity?
3. Suppose X is an inner product space and fix $y \in X$. Define a function $f: X \rightarrow \mathbb{R}$ by $f(x)=\langle x, y\rangle$. Show f is continuous (using the metric space induced by inner product on X and the usual metric space on \mathbb{R}.) Hint: Use Cauchy-Schwarz but you knew that already.
4. Show that \mathbb{R}^{n} is compele under $\|\vec{x}\|_{2}$, and hence \mathbb{R}^{n} is a Hilbert Space under the ussual dot product.
