- 1. Consider $\vec{x} = (1, -2, 0, 1)$ and $\vec{y} = (2, 0, -3, 1)$ to be elements of the inner product space on \mathbb{R}^4 .
 - (a) Find $|\langle \vec{x}, \vec{y} \rangle|$.
 - (b) What upper bound does Cauchy-Schwarz give for this quantity?
- 2. Consider f(x) = x and $g(x) = \exp(x)$ to be elements of the inner product space $L^2([0,1])$.
 - (a) Find $|\langle f, g \rangle|$.
 - (b) What upper bound does Cauchy-Schwarz give for this quantity?
- 3. Suppose X is an inner product space and fix $y \in X$. Define a function $f : X \to \mathbb{R}$ by $f(x) = \langle x, y \rangle$. Show f is continuous (using the metric space induced by inner product on X and the usual metric space on \mathbb{R} .) Hint: Use Cauchy-Schwarz but you knew that already.
- 4. Show that \mathbb{R}^n is compele under $||\vec{x}||_2$, and hence \mathbb{R}^n is a Hilbert Space under the usual dot product.