1. Let A be an $m \times n$ matrix. Thus we can think of $A \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$. Let \mathbb{R}^{m} (the co-domain) have the uniform norm, $\|\cdot\|_{u}$. Find (and describe) the operator norm of $A,\|A\|_{\mathrm{OP}}$ where:
(a) \mathbb{R}^{n} (the domain) has $\|\cdot\|_{u}$.
(b) \mathbb{R}^{n} (the domain) has $\|\cdot\|_{1}$.
2. For each of the 4 norms given for A above and in class find $\|A\|$ for:

$$
A=\left[\begin{array}{ccc}
1 & -4 & 0 \\
-2 & 3 & 0 \\
-3 & 5 & 8 \\
-4 & 1 & -2
\end{array}\right]
$$

3. Let X be a vector space and $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$. Suppose for all $x \in X,\|x\|_{a} \leq\|x\|_{b}$. There are 4 possible norms on $L(X, Y)$, call them $\|\cdot\|_{a a},\|\cdot \cdot\|_{a b},\|\cdot\|_{b a}$, and $\|\cdot\|_{b b}$ where for example $\|\cdot\|_{a b}$ is the operator norm with a norm on the domain and b norm on the co-domain. As best as possible find the order relationship between the four norms (Hint: two will be incomparable).
4. Check that the last question works on the 4 norms we had for $m \times n$ matrices.
