1. Suppose $\left\{a_{n}\right\}$ is a sequence. Show:
(a) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\beta<1$ then $\sum_{k=0}^{\infty} a_{k}$ converges absolutely.
(b) If $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\beta>1$ then $\sum_{k=0}^{\infty} a_{k}$ diverges.
(c) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\beta<1$ then $\sum_{k=0}^{\infty} a_{k}$ converges absolutely.
(d) If $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\beta>1$ then $\sum_{k=0}^{\infty} a_{k}$ diverges.
2. Let a_{n} defined as:

$$
a_{n}= \begin{cases}\frac{1}{2^{(n+1) / 2} \cdot 3^{(n-1) / 2}} & \text { if } n \text { is odd } \\ \frac{1}{2^{n / 2} \cdot 3^{n / 2}} & \text { if } n \text { is even }\end{cases}
$$

Show that $\sum_{k=0}^{\infty} a_{k}$ converges.
3. Let a_{n} defined as:

$$
a_{n}= \begin{cases}\frac{1}{2^{(n+1) / 2}} & \text { if } n \text { is odd } \\ \frac{1}{3^{n / 2}} & \text { if } n \text { is even }\end{cases}
$$

Show that $\sum_{k=0}^{\infty} a_{k}$ converges.
4. Find all x (except possibly 2 points) such that the following series converge:
(a) $\sum_{k=0}^{\infty} \frac{(x+2)^{k}}{5^{k}}$
(b) $\sum_{k=1}^{\infty} \frac{(x-1)^{k}}{k^{2} 3^{k}}$
(c) $\sum_{k=0}^{\infty} \frac{(2 x)^{k}}{k!}$
(d) $\sum_{k=1}^{\infty}\left(1+\frac{x}{k}\right)^{k}$
(That is you can say "I don't know" for at most 2 points per problem, but you must say what all the other x do).

