1. In class we definied Thomae's function $h:[0,1] \rightarrow \mathbb{R}$ as:

$$
h(x)= \begin{cases}1 & \text { if } x=0 \\ \frac{1}{n} & \text { if } x=\frac{m}{n} \text { where } \operatorname{gcd}(m, n)=1 \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}
$$

(a) Show that h is not continuous for all $a \in \mathbb{Q}$.
(b) Show that h is continuous for all $a \in \mathbb{R} \backslash \mathbb{Q}$.
2. Suppose that $[c, d] \subseteq[a, b]$. Remember that:

$$
\mathbb{1}_{[c, d]}(x)= \begin{cases}1 & \text { if } x \in[c, d] \\ 0 & \text { if } x \notin[c, d]\end{cases}
$$

Show that:
(a) $\mathbb{1}_{[c, d]} \in \mathcal{R}[a, b]$ and that $\int_{a}^{b} \mathbb{1}_{[c, d]}=d-c$.
(b) $\mathbb{1}_{(c, d]}, \mathbb{1}_{(c, d)}, \mathbb{1}_{[c, d)} \in \mathcal{R}[a, b]$ and that $\int_{a}^{b} \mathbb{1}_{(c, d]}=\int_{a}^{b} \mathbb{1}_{[c, d)}=\int_{a}^{b} \mathbb{1}_{(c, d)}=d-c$.
3. Suppose that $f \in c([a, b])$ (and further assume $f \in \mathcal{R}[a, b]$ since we have not yet proved that this is implied but we will), such that $f(x) \geq 0$ for all $x \in[a, b]$ and $\int_{a}^{b} f=0$. Show $f(x)=0$ for all $x \in[a, b]$
4. Find $f \in \mathcal{R}([a, b])$, such that $f(x) \geq 0$ for all $x \in[a, b]$ and $\int_{a}^{b} f=0$, but $f(c) \neq 0$ for some $c \in \mathbb{R}$.
5. Let f be the fractional part function, i.e. $f(3.324)=0.324$ ect.
(a) Graph f from 0 to 10
(b) Show that $f \in \mathcal{R}[0,10]$.
(c) Find $\int_{0}^{10} f$.

