Homework Due on Feb 17, 2015

1. Finish the proof that if $\alpha, \beta, \gamma \in[a, b]$ and $f \in \mathcal{R}[a, b]$, then:

$$
\int_{\alpha}^{\gamma} f=\int_{\alpha}^{\beta} f+\int_{\beta}^{\gamma} f
$$

2. Suppose $f, F:[a, b] \rightarrow \mathbb{R}$ with F differentiable and $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$ and $f \in \mathcal{R}[a, b]$. Suppose $\alpha, \beta \in[a, b]$ show:

$$
\int_{\alpha}^{\beta} f=F(\beta)-F(\alpha)
$$

3. Let $F:[0,3] \rightarrow \mathbb{R}$ defined by:

$$
F(x)= \begin{cases}0 & \text { if } 0 \leq x \leq 1 \\ x-1 & \text { if } 1<x<2 \\ 1 & \text { if } 2 \leq x \leq 3\end{cases}
$$

(a) Prove that $F \in c([0,3])$
(b) Find an $f:[0,3] \rightarrow \mathbb{R}$ such that $F^{\prime}(x)=f(x)$ for all but a finite set.
(c) Find $\int_{0}^{3} f$.
(d) Find $\int_{0}^{3} F$.
4. Suppose $f \in \mathcal{R}[a, b]$ and $m, M \in \mathbb{R}$.
(a) Suppose $m \leq f(x) \leq M$ for all $x \in[a, b]$ show $m(b-a) \leq \int_{a}^{b} f(x) \leq M(b-a)$.
(b) Suppose $|f(x)| \leq M$ for all $x \in[a, b]$ show $\left|\int_{a}^{b} f\right| \leq M(b-a)$
(c) Suppose $|f(x)| \leq M$ for all $x \in[a, b]$ and $\alpha, \beta \in[a, b]$ show $\left|\int_{\alpha}^{\beta} f\right| \leq M|\beta-\alpha|$
5. For each of the following determine (with proof) if f is Lipschitz continuous on the given domain.
(a) $f(x)=x^{2}$ on $[0,1]$
(b) $f(x)=x^{2}$ on $(1, \infty)$
(c) $f(x)=\sqrt{x}$ on $[1,2]$
(d) $f(x)=\sqrt{x}$ on $(1, \infty)$

