Homework Due on Feb 17, 2015

1. Finish the proof that if $\alpha, \beta, \gamma \in [a, b]$ and $f \in \mathcal{R}[a, b]$, then:

$$\int_{\alpha}^{\gamma} f = \int_{\alpha}^{\beta} f + \int_{\beta}^{\gamma} f$$

2. Suppose $f, F : [a, b] \to \mathbb{R}$ with F differentiable and F'(x) = f(x) for all $x \in [a, b]$ and $f \in \mathcal{R}[a, b]$. Suppose $\alpha, \beta \in [a, b]$ show:

$$\int_{\alpha}^{\beta} f = F(\beta) - F(\alpha)$$

3. Let $F : [0,3] \to \mathbb{R}$ defined by:

$$F(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1\\ x - 1 & \text{if } 1 < x < 2\\ 1 & \text{if } 2 \le x \le 3 \end{cases}$$

- (a) Prove that $F \in c([0,3])$
- (b) Find an $f:[0,3] \to \mathbb{R}$ such that F'(x) = f(x) for all but a finite set.
- (c) Find $\int_0^3 f$. (d) Find $\int_0^3 F$.
- 4. Suppose $f \in \mathcal{R}[a, b]$ and $m, M \in \mathbb{R}$.
 - (a) Suppose $m \le f(x) \le M$ for all $x \in [a, b]$ show $m(b-a) \le \int_a^b f(x) \le M(b-a)$.
 - (b) Suppose $|f(x)| \le M$ for all $x \in [a, b]$ show $\left| \int_{a}^{b} f \right| \le M(b-a)$
 - (c) Suppose $|f(x)| \le M$ for all $x \in [a, b]$ and $\alpha, \beta \in [a, b]$ show $\left| \int_{\alpha}^{\beta} f \right| \le M |\beta \alpha|$
- 5. For each of the following determine (with proof) if f is Lipschitz continuous on the given domain.
 - (a) $f(x) = x^2$ on [0, 1](b) $f(x) = x^2$ on $(1, \infty)$ (c) $f(x) = \sqrt{x}$ on [1, 2](d) $f(x) = \sqrt{x}$ on $(1, \infty)$