1. Let $f(x) = \frac{1}{x}$. For any number $a \in \mathbb{R}^+$. Do the following:

- (a) Prove $f \in \mathcal{R}[\min(a, 1), a + 1]$
- (b) Define $\ln(x) = \int_{1}^{x} f$ (this is all you know about natural log so don't sneak rumors you have heard about it). Prove $\ln(x)$ is continuous on $(0, \infty)$.
- (c) Prove that $\ln(x)$ is increasing on $(0, \infty)$
- (d) Let a > 0 be fixed for now. Let $g(x) = \ln(x) + \ln(a)$ and $h(x) = \ln(ax)$. Show h'(x) = g'(x) for all $x \in (0, \infty)$.
- (e) Argue that in the above h(x) = g(x) for all $x \in (0, \infty)$
- (f) Argue from the above that for all $a, b \in (0, \infty)$, $\ln(ab) = \ln(a) + \ln(b)$.
- (g) Prove that $\ln(x)$ is injective (1-1) on $(0,\infty)$
- (h) Let $B = \ln((0,\infty))$ be the image of f and let $\exp(x)$ be the inverse function of $\ln(x)$ on $(0,\infty)$ (one exists since $\ln(x)$ is injective). So $\exp: B \to (0,\infty)$. Prove that $\exp(x)$ is continuous
- (i) Prove that $\exp(x)$ is increasing.
- (j) Prove for all $a, b \in B$, $\exp(a + b) = \exp(a) \exp(b)$.
- 2. Suppose $f \in b[a, b]$ then show that $f \in \mathcal{R}[a, b]$ if and only if for all $\epsilon > 0$ there exists a partition $\mathcal{P} = (x_0, x_1, \dots, x_n)$ of [a, b] such that if $\{t_i\}$ and $\{q_i\}$ are any tags for \mathcal{P} then:

$$\sum_{i=1}^{n} |f(t_i) - f(q_i)| (x_i - x_{i-1}) < \epsilon.$$