1. Let $f(x)=\frac{1}{x}$. For any number $a \in \mathbb{R}^{+}$. Do the following:
(a) Prove $f \in \mathcal{R}[\min (a, 1), a+1]$
(b) Define $\ln (x)=\int_{1}^{x} f$ (this is all you know about natural log so don't sneak rumors you have heard about it). Prove $\ln (x)$ is continuous on $(0, \infty)$.
(c) Prove that $\ln (x)$ is increasing on $(0, \infty)$
(d) Let $a>0$ be fixed for now. Let $g(x)=\ln (x)+\ln (a)$ and $h(x)=\ln (a x)$. Show $h^{\prime}(x)=g^{\prime}(x)$ for all $x \in(0, \infty)$.
(e) Argue that in the above $h(x)=g(x)$ for all $x \in(0, \infty)$
(f) Argue from the above that for all $a, b \in(0, \infty), \ln (a b)=\ln (a)+\ln (b)$.
(g) Prove that $\ln (x)$ is injective $(1-1)$ on $(0, \infty)$
(h) Let $B=\ln ((0, \infty))$ be the image of f and let $\exp (x)$ be the inverse function of $\ln (x)$ on $(0, \infty)$ (one exists since $\ln (x)$ is injective). So $\exp : B \rightarrow(0, \infty)$. Prove that $\exp (x)$ is continuous
(i) Prove that $\exp (x)$ is increasing.
(j) Prove for all $a, b \in B, \exp (a+b)=\exp (a) \exp (b)$.
2. Suppose $f \in b[a, b]$ then show that $f \in \mathcal{R}[a, b]$ if and only if for all $\epsilon>0$ there exists a partition $\mathcal{P}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of $[a, b]$ such that if $\left\{t_{i}\right\}$ and $\left\{q_{i}\right\}$ are any tags for \mathcal{P} then:

$$
\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(q_{i}\right)\right|\left(x_{i}-x_{i-1}\right)<\epsilon
$$

