1. In class we showed that if $0<b<1$ then:

$$
\ln (1+b)=\sum_{k=1}^{n}(-1)^{k} \frac{b^{k}}{k}+R_{n}
$$

where $R_{n}<b^{n+1}$. Use this (and not the way you did it on the quiz) to show that $\ln (2)<1$.
2. More fun with $\exp (x)$ and $\ln (x)$. For this problem you may use any of the results in the previous homework (whether you proved it or not).
(a) Let $q \in \mathbb{Q}$ and $a>0$ show that $\ln \left(a^{q}\right)=q \ln (a)$.
(b) Let $q \in \mathbb{Q}$ show that $\exp (q)=e^{q}$.
(c) Suppose $a>0$ define $a^{x}=\exp (x \ln (a))$. We (I mean in real analysis I) have previously defined a^{q} when $q \in \mathbb{Q}$, show this definition is consistent with that definition.
(d) Let $a>0$ and define $f(x)=a^{x}$, show that f is differentiable on $(-\infty, \infty)$ and find $f^{\prime}(x)$.
(e) Following what we did in class with Taylor's theorem, to show for any $b \in \mathbb{R}$:

$$
\exp (b)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{b^{n}}{n!}
$$

Hint: I assume that in Math 360 you proved that for all $x \in \mathbb{R}, \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$. In any case you may use this fact.

