1. Suppose $f, g \in \mathcal{R}[a, b]$ show:
(a) if $k \in \mathbb{R}$ then $k f \in \mathcal{R}[a, b]$.
(b) if $f(x) \leq g(x)$ for all $x \in[a, b]$ then $\int_{a}^{b} f \leq \int_{a}^{b} g$.
2. Let $f(x)=x$ and $a<b$. Show that $f \in \mathcal{R}[a, b]$ and find $\int_{a}^{b} f$.
3. Let $g(x)=4 x+3$. Show $g \in \mathcal{R}[1,4]$ and find $\int_{1}^{4} g$.
4. Suppose $f \in \mathcal{R}[a, b]$ and $c \in \mathbb{R}$, we define $g:[a+c, b+c] \rightarrow \mathbb{R}$ by $g(x)=f(x-c)$. Prove that $g \in \mathcal{R}[a+c, b+c]$ and:

$$
\int_{a+c}^{b+c} g=\int_{a}^{b} f
$$

The function g is called to c-translate of f.

