Homework Due on March 17, 2015

1. (a) Show that the only roots of the C function on $[0,2 \pi]$ are $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$.
(b) Show that C is periodic with period 2π.
2. Show that $3 \leq \pi \leq 2 \sqrt{6-2 \sqrt{3}}$. (Hint use $C(x)$)
3. (a) Show that S has roots when $x=k \pi$ where $k \in \mathbb{Z}$.
(b) Show these are the only roots of S. (Hint spend some time thinking about this and use the greatest integer function).
4. Show that if $0 \leq \alpha, \beta \leq \frac{\pi}{2}$ and $\frac{\pi}{2}<\alpha+\beta \leq \pi$. Then:

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin (\alpha) \cos (\beta)+\sin (\beta) \cos (\alpha) \\
\cos (\alpha+\beta) & =\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)
\end{aligned}
$$

5. Show for all $\alpha, \beta \in \mathbb{R}$ then:

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\sin (\beta) \cos (\alpha) \\
& \cos (\alpha+\beta)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta)
\end{aligned}
$$

