1. Remember now that sin and cos are the same as what we called S and C so you can use all the properties we showed for S and C. Define $\tan (x)=\frac{\sin (x)}{\cos (x)}$.
(a) Show $\tan (x):\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}$ is an increasing, continuous, bijection.
(b) Define $\arctan (x): \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to be the functional inverse of $\tan (x)$. Show it is an increasing, continuous, bijection.
(c) Find $\arctan ^{\prime}(x)$.
2. Show if $\sum_{k=1}^{\infty} a_{k}$ converges then $\lim _{k \rightarrow \infty} a_{k}=0$.
3. Suppose for some $M>0,0 \leq M b_{k} \leq a_{k}$ eventually. Show that if $\sum b_{k}$ diverges, then $\sum a_{k}$ diverges.
4. Suppose that $\left|\frac{a_{k+1}}{a_{k}}\right|>1$ eventually. Show that $\sum a_{k}$ diverges.
