Homework Due on March 24, 2015

- 1. Remember now that sin and cos are the same as what we called S and C so you can use all the properties we showed for S and C. Define $\tan(x) = \frac{\sin(x)}{\cos(x)}$.
 - (a) Show $\tan(x): (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ is an increasing, continuous, bijection.
 - (b) Define $\arctan(x) : \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ to be the functional inverse of $\tan(x)$. Show it is an increasing, continuous, bijection.
 - (c) Find $\arctan'(x)$.
- 2. Show if $\sum_{k=1}^{\infty} a_k$ converges then $\lim_{k \to \infty} a_k = 0$.
- 3. Suppose for some M > 0, $0 \le Mb_k \le a_k$ eventually. Show that if $\sum b_k$ diverges, then $\sum a_k$ diverges.
- 4. Suppose that $\left|\frac{a_{k+1}}{a_k}\right| > 1$ eventually. Show that $\sum a_k$ diverges.