1. Let a_{n} defined as:

$$
a_{n}= \begin{cases}\frac{1}{2^{(n+1) / 2}} & \text { if } n \text { is odd } \\ \frac{1}{3^{n / 2}} & \text { if } n \text { is even }\end{cases}
$$

Show that $\sum_{k=0}^{\infty} a_{k}$ converges.
2. Suppose that $\sum_{k=0}^{\infty} a_{k}\left(x_{0}-a\right)^{k}$ diverges for some $x_{0} \in \mathbb{R}$. Show that the power series diverges for all x such that $|x-a|>\left|x_{0}-a\right|$.
3. Suppose that for a power series $\sum_{k=0}^{\infty} a_{k}\left(x_{0}-a\right)^{k}$ has radius of convergence R. That is:

$$
R=\sup \{|x-a|: \text { the series converges for } x\}
$$

which is possible ∞.
Show:
(a) The series converges absolutely on $(a-R, a+R)$
(b) The series diverges for all x for which $|x-a|>R$
4. For each of the following find the radius of convergence of the series.
(a) $\sum_{k=1}^{\infty} k(x-2)^{k}$
(b) $\sum_{k=0}^{\infty} k\left(-\frac{1}{3}\right)^{k}(x-2)^{k}$
(c) $\sum_{k=0}^{\infty} \frac{k}{3^{2 k-1}}(x-1)^{2 k}$
(d) $\sum_{k=2}^{\infty} \frac{x^{k}}{(\ln k)^{k}}$

