1. For this problem you may use any of the results in the previous homework (whether you proved it or not). Remember for $a>0$ and $x \in \mathbb{R}$, we defined $a^{x}=\exp (x \ln (a))$.
(a) Show that if $a>0$ and $x, y \in \mathbb{R}$ show that $a^{x+y}=a^{x} a^{y}$.
(b) Show that if $a>0$ and $x \in \mathbb{R}$ then $\ln \left(a^{x}\right)=x \ln (a)$.
(c) Show that if $a>0$ and $x, y \in \mathbb{R}$ show that $a^{x y}=\left(a^{x}\right)^{y}$.
(d) Let $a \in \mathbb{R}$ and define $f(x)=x^{a}$. Show that f is differentiable on $(0, \infty)$, and find $f^{\prime}(x)$.
2. For each $n \in \mathbb{N}$ let $f_{n}(x)=\sum_{k=0}^{n} \frac{x^{k}}{k!}$. Show that for $M>0, f_{n} \rightarrow \exp (x)$ uniformly on $[-M, M]$.
3. For all $n \in \mathbb{N}$ define $f_{n}:[0,1] \rightarrow \mathbb{R}$ where:

$$
f_{n}(x)= \begin{cases}n^{2} x & \text { if } x \in\left[0, \frac{1}{n}\right] \\ 2 n-n^{2} x & \text { if } x \in\left(\frac{1}{n}, \frac{2}{n}\right) \\ 0 & \text { if } x \in\left[\frac{2}{n}, 1\right]\end{cases}
$$

(a) Draw f_{n} for a $n=1,10,100$.
(b) Find f such that $f_{n} \rightarrow f$ pointwise.
(c) Does $\int_{0}^{1} f_{n} \rightarrow \int_{0}^{1} f$?
(d) Are f_{n} and f continuous?
(e) Does f_{n} converge to f uniformly?

