Homework Due on April 14, 2015

- 1. Suppose $\vec{x} \in \mathbb{R}^n$ show:
 - (a) $||\vec{x}||_{\infty} \le ||\vec{x}||_{1} \le n||\vec{x}||_{\infty}$
 - (b) $||\vec{x}||_{\infty} \le ||\vec{x}||_2 \le \sqrt{n} ||\vec{x}||_{\infty}$
 - (c) Show that a set is open in $(\mathbb{R}^n, ||\cdot||_1)$ if and only if it is open in $(\mathbb{R}^n, ||\cdot||_2)$ if and only if it is open in $(\mathbb{R}^n, ||\cdot||_{\infty})$
- 2. Let $a \in \mathbb{R}^{\infty}$ with $\mathbf{a} = \{a_n\}_{n=1}^{\infty}$

$$a_n = \begin{cases} 5^{-n} & \text{if } n \text{ is odd} \\ 2^{-n} & \text{if } n \text{ is even} \end{cases}$$

Find:

- (a) $||\mathbf{a}||_1$
- (b) $||\mathbf{a}||_2$
- (c) $||\mathbf{a}||_{\infty}$

Hint: If a series converges absolutely then the series can be summed in any order.

- 3. Show that $(L^1, ||\cdot||_1)$ is a normed vector space. Remember that L^1 consists of equivalence classes so that is why $||f||_1$ is 0 only when f is 0 in the sense that it is in the same equivalence class as 0.
- 4. Show $\frac{\sqrt{2}}{\sqrt{\pi}}\sin(x)$ and $\frac{\sqrt{2}}{\sqrt{\pi}}\cos(x)$ form an orthonormal basis for a finite dimensional subspace of $L^2([0,\pi])$. (You might have to look up some linear algebra.)