Homework Due on April 30, 2015

1. Let $X=\{f:[1,4] \rightarrow \mathbb{R}: f$ is a polynomial $\}$ with the norm $\|\cdot\|_{\infty}$. Let $h \in X$ be defined by $h(x)=x^{2}-4 x-3$. Let $I \in X^{*}$ be defined by $I(f)=\int_{1}^{4} 2 f$. For each $a \in[1,4]$ and $f \in X$ let $E_{a}(f)=f(a)$. For $f \in X$ let $\mathcal{F}_{f} \in X^{* *}$ be defined by $\mathcal{F}_{f}(T)=T(f)$. Finally let $F: X \rightarrow X^{* *}$ be defined by: $F(x)=\mathcal{F}_{x}$. All norms below are the norms on their respective spaces. (Hint: Don't let the notation confuse you.)
(a) Find $\|h\|$.
(b) Find $\|I\|$.
(c) Show $E_{a} \in X^{*}$ for all $a \in[1,4]$.
(d) Find $\left\|E_{a}\right\|$.
(e) Without the Hahn-Banach Theorem find $\left\|\mathcal{F}_{h}\right\|$.
(f) In class we showed that the Hahn-Banach Theorem implies that F is an isometric embedding of X into $X^{* *}$ (i.e. an injective norm-preserving map). Show $F(X) \neq X^{* *}$ (i.e. F is not onto).
