1. Suppose $\{a_n\}$ is a sequence. Show:

(a) If
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \beta < 1$$
 then $\sum_{k=0}^{\infty} a_k$ converges absolutely.
(b) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \beta > 1$ then $\sum_{k=0}^{\infty} a_k$ diverges.

2. Let a_n defined as:

$$a_n = \begin{cases} \frac{1}{2^{(n+1)/2} \cdot 3^{(n-1)/2}} & \text{if } n \text{ is odd} \\ \frac{1}{2^{n/2} \cdot 3^{n/2}} & \text{if } n \text{ is even} \end{cases}$$

Show that
$$\sum_{k=0}^{\infty} a_k$$
 converges.

- 3. Consider the power series: $\sum_{k=1}^{\infty} kx^k$.
 - (a) Find its radius of convergence
 - (b) In the interior of the interval of convergence, give a closed form expression (one without summation) for what the function the series converges to.
 - (c) Find the sum of $\sum_{k=1}^{\infty} \frac{k}{2^k}$.

4. Consider the power series:
$$\sum_{k=1}^{\infty} k^2 x^k$$
.

- (a) Find its radius of convergence
- (b) In the interior of the interval of convergence, give a closed form expression (one without summation) for what the function the series converges to.
- (c) Find the sum of $\sum_{k=1}^{\infty} \frac{k^2}{3^k}$.
- 5. Let X be a nonempty set and define:

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y. \end{cases}$$

Show (X, d) is a metric space.