Math 370 Number Theory Assignment # 2

- 1. Suppose that $a, b \in \mathbb{Z}$ with $a \neq 0$. Show gcd(a, b) = gcd(-a, b).
- 2. Use the Euclidian Algorithm and the above problem to find gcd(-209287, -2023).
- 3. Finish the proof of the division algorithm proving by that if $a \in \mathbb{Z}$ with a < 0 and $b \in \mathbb{N}$ then there exist $q, r \in \mathbb{Z}$ such that $a = q \cdot b + r$ and $0 \le r < b$. (Hint: in class we prove that this holds when $a \ge 0$ so you can use this fact in your proof. We also proved uniqueness in all cases so you don't need to do that).
- 4. Let $a, b \in \mathbb{Z}$ be not both 0.
 - (a) Show that the Diophantine equation ax + by = d has a solution for $x, y \in \mathbb{Z}$ if and only if g|d where $g = \gcd(a, b)$.
 - (b) Show that a and b are relatively prime if and only if there exists $x, y \in \mathbb{Z}$ such that ax + by = 1.
 - (c) Use the above to give a different proof of the following theorem you proved in the last homework:
 Suppose a and b are positive integers with g = gcd(a, b), prove gcd(a/g, b/g) = 1.
- 5. Suppose that a and b are relatively prime, prove that if $m \in \mathbb{Z}$ and a|mb then a|m. (Hint: There is a very nice and easy way to do this.)