## Math 370 Number Theory Assignment \# 2

1. Suppose that $a, b \in \mathbb{Z}$ with $a \neq 0$. Show $\operatorname{gcd}(a, b)=\operatorname{gcd}(-a, b)$.
2. Use the Euclidian Algorithm and the above problem to find gcd(-209287, - 2023).
3. Finish the proof of the division algorithm proving by that if $a \in \mathbb{Z}$ with $a<0$ and $b \in \mathbb{N}$ then there exist $q, r \in \mathbb{Z}$ such that $a=q \cdot b+r$ and $0 \leq r<b$. (Hint: in class we prove that this holds when $a \geq 0$ so you can use this fact in your proof. We also proved uniqueness in all cases so you don't need to do that).
4. Let $a, b \in \mathbb{Z}$ be not both 0 .
(a) Show that the Diophantine equation $a x+b y=d$ has a solution for $x, y \in \mathbb{Z}$ if and only if $g \mid d$ where $g=\operatorname{gcd}(a, b)$.
(b) Show that $a$ and $b$ are relatively prime if and only if there exists $x, y \in \mathbb{Z}$ such that $a x+b y=1$.
(c) Use the above to give a different proof of the following theorem you proved in the last homework:
Suppose $a$ and $b$ are positive integers with $g=\operatorname{gcd}(a, b), \operatorname{prove} \operatorname{gcd}(a / g, b / g)=1$.
5. Suppose that $a$ and $b$ are relatively prime, prove that if $m \in \mathbb{Z}$ and $a \mid m b$ then $a \mid m$. (Hint: There is a very nice and easy way to do this.)
