Math 370 Number Theory Assignment # 3

- 1. Prove that if $a, b, c \in \mathbb{Z}$ such that a|b and b|c then a|c. (Try to do this by yourself without notes, formally and carefully)
- 2. Let that $a, b \in \mathbb{N}$ be relatively prime. Show that if a|c and b|c then ab|c.
- 3. (a) Prove that 2|n(n+1) for all $n \in \mathbb{N}$.
 - (b) Prove by induction that $6|n(n^2+5)$ for all $n \in \mathbb{N}$.
 - (c) Let $a \in \mathbb{R}$ with $a \neq 1$. Prove by induction that for all $n \in \mathbb{N}$:

$$1 + a + a^{2} + \ldots + a^{n} = \frac{1 - a^{n+1}}{1 - a}$$

- 4. In each case determine if the Diophantine equation has a solution. If it does find two solutions.
 - (a) 21284x + 354756y = 68
 - (b) 25704x + 249288y = 25
- 5. Like in chapter 7, let $\mathbb{E} = \{\dots, -4, -2, 0, 2, 4, \dots\}.$
 - (a) Write down the first 10 "primes" (positive elements in \mathbb{E} that are not the product of two elements in \mathbb{E} .)
 - (b) Make a conjecture about when a number is an element of \mathbb{E} is prime. (Hint: There is a very simple condition.)
 - (c) Prove this conjecture.
- 6. Factor the number 97881827. (Hint: all the prime factors are less than 300 so don't panic).