Math 370 Number Theory Assignment # 7

- 1. (a) Suppose that $k, m, n \in \mathbb{N}$ such that gcd(m, n) = 1. Let a = gcd(k, m) and b = gcd(k, n) and k|mn. Show that:
 - i. gcd(a, b) = 1.
 - ii. ab|k.
 - iii. Show that k|ab and hence k=ab. (Hint: Use Bézout's theorem for both a and b).
 - (b) Show if m, n are relatively prime natural numbers then k|mn if and only if k = ab where a|m and b|n and gcd(a, b) = 1.
- 2. For $n \in \mathbb{N}$, define:

$$\sigma(n) = \sum_{d|n} d.$$

That is $\sigma(n)$ is the sum of all divisors on n.

- (a) Find:
 - i. $\sigma(15)$
 - ii. $\sigma(4)$
 - iii. $\sigma(60)$
- (b) Show that σ is arithmetic multiplicative. (Hint use the result from Question 1).
- 3. Let p be an odd prime and $a \in \mathbb{Z}$ with $p \not| a$. Show that if $x^2 = a \pmod{p}$ has a solution, then it has exactly 2 solutions (up to congruence i.e. there are two solutions between 0 and p-1). (Hint let b be a solution and then show there will be exactly 2).