Math 370 Number Theory Assignment \# 7

1. (a) Suppose that $k, m, n \in \mathbb{N}$ such that $\operatorname{gcd}(m, n)=1$. Let $a=\operatorname{gcd}(k, m)$ and $b=\operatorname{gcd}(k, n)$ and $k \mid m n$. Show that:
i. $\operatorname{gcd}(a, b)=1$.
ii. $a b \mid k$.
iii. Show that $k \mid a b$ and hence $\mathrm{k}=\mathrm{ab}$. (Hint: Use Bézout's theorem for both a and b).
(b) Show if m, n are relatively prime natural numbers then $k \mid m n$ if and only if $k=a b$ where $a \mid m$ and $b \mid n$ and $\operatorname{gcd}(a, b)=1$.
2. For $n \in \mathbb{N}$, define:

$$
\sigma(n)=\sum_{d \mid n} d
$$

That is $\sigma(n)$ is the sum of all divisors on n.
(a) Find:
i. $\sigma(15)$
ii. $\sigma(4)$
iii. $\sigma(60)$
(b) Show that σ is arithmetic multiplicative. (Hint use the result from Question 1).
3. Let p be an odd prime and $a \in \mathbb{Z}$ with $p \nmid a$. Show that if $x^{2}=a(\bmod p)$ has a solution, then it has exactly 2 solutions (up to congruence i.e. there are two solutions between 0 and $p-1$). (Hint let b be a solution and then show there will be exactly 2).

