1. Show if m, n are relatively prime then $k \mid m n$ if and only if $k=a b$ where $a \mid m$ and $b \mid n$.
2. Show if $n_{1}, \ldots n_{r}$ are pairwise relatively prime then $k \mid n_{1} n_{2} \ldots n_{r}$ if and only if $k=a_{1} a_{2} \ldots a_{r}$ where $a_{i} \mid n_{i}$.
3. Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$ with $1 \leq \alpha_{i}$ and p_{i} prime, is the unique prime factorization of n. Show that $a \mid n$ if and only if $a=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{r}^{\beta_{r}}$ where $0 \leq \beta_{i} \leq \alpha_{i}$. This shows that the unique factorization of a must included only primes in the factorization on n and must have smaller (or equal) powers of each of those primes.
