1. Use the well-ordering property to show that there does not exists an infinite strictly decreasing sequence of non-negative integers.
2. Like in chapter 7 , let $\mathbb{E}=\{\ldots,-4,-2,0,2,4, \ldots\}$.
(a) Write down the first 10 "primes" (positive elements in \mathbb{E} that are not the product of two elements in \mathbb{E}.)
(b) Make a conjecture about when a number is an element of \mathbb{E} is prime. (Hint: There is a very simple condition.)
(c) Prove this conjecture.
3. Suppose p is prime and $m>0$ with $p \nmid m$ then prove from the definition of gcd that $\operatorname{gcd}(m, p)=1$.
