Use gp to solve the following. Use the commands: $\operatorname{bezout}(a, b), \operatorname{Mod}(a, n)$ and factor (n). You probably want to copy and paste the numbers into gp otherwise you will almost certainly make a mistake in typing the numbers. Since it is sometimes hard to copy and paste from a pdf file, I have included a link: "http://home.sandiego.edu/ cparker/math370/numbers.html" to an html file with the numbers. It might also be easier to use the assignment statement in gp, that is type " $a=15$ " to store a as 15 .

1. Find all incongruent solutions to:

$$
a x \equiv b(\bmod m)
$$

where:

$$
\begin{aligned}
a & =1254851451547852 \\
b & =123441422 \\
m & =158745852141451118514
\end{aligned}
$$

2. Let $n=143463297936326060937067935856984812402586546758449448908554164755013977393$.
(a) Try to factor n. Let it go for a few minutes.
(b) Try to figure out if it is prime using Fermat's Little Theorem.
