## Collected Problems:

1. Let $m=2373147399397166371774039598905033984080129517761100036979041$.
(a) Try to show $m$ is composite by factoring it. Stop after 1 minute.
(b) Try to show that $m$ is composite using Fermat's little theorem with at least 5 different values of $a$. You will fail.
(c) Try to show $m$ is composite with the Rabin-Miller test with $a=1511111114$. You will again fail.
(d) Show $m$ composite by the Rabin-Miller test with some other $a$.
2. Find the following values of Mõbius function.
(a) $\mu(12)$
(b) $\mu(123)$
(c) $\mu(3715)$
(d) $\mu(30030)$
3. Show that if $n$ is a positive integer then $\mu(n) \mu(n+1) \mu(n+2) \mu(n+3)=0$
4. Prove or disprove that there are infinitely many positive integers $n$ such that $\mu(n)+\mu(n+1)=1$.
