At the end of class today something seemed to be going wrong so here are the correct values. I did not write down what we did in class but presumably it was different than this:

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 0 & 1 \\
2 & 3 & 1
\end{array}\right] \\
\operatorname{adj}(A) & =\left[\begin{array}{ccc}
-3 & 7 & 2 \\
-2 & -5 & 11 \\
12 & 1 & -8
\end{array}\right] \\
\operatorname{det}(A) & =29 \\
A \cdot \operatorname{adj}(A) & =\left[\begin{array}{ccc}
29 & 0 & 0 \\
0 & 29 & 0 \\
0 & 0 & 29
\end{array}\right] \operatorname{det}(A) \cdot I_{3} \\
\operatorname{adj}(A) & \equiv\left[\begin{array}{lll}
2 & 2 & 2 \\
3 & 0 & 1 \\
2 & 1 & 2
\end{array}\right](\bmod 5) \\
\operatorname{det}(A) & \equiv 4(\bmod 5) \\
(\operatorname{det}(A))^{-1} & \equiv 4(\bmod 5) \\
B & \equiv(\operatorname{det}(A))^{-1} \operatorname{adj}(A)=\left[\begin{array}{lll}
3 & 3 & 3 \\
2 & 0 & 4 \\
3 & 4 & 3
\end{array}\right] \equiv A^{-1}(\bmod 5) \\
B \cdot A & =\left[\begin{array}{lll}
21 & 15 & 15 \\
10 & 16 & 10 \\
25 & 15 & 16
\end{array}\right] \equiv\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right](\bmod 5)
\end{aligned}
$$

Hope that helps.

