Math 370 Number Theory Assignment \# 2

1. Let $a, b \in \mathbb{Z}$ be not both 0 . (Do this problem on a separate paper and don't staple it so that a student can critique it.)
(a) Show that the Diophantine equation $a x+b y=d$ has a solution for $x, y \in \mathbb{Z}$ if and only if $g \mid d$ where $g=\operatorname{gcd}(a, b)$.
(b) Show that a and b are relatively prime if and only if there exists $x, y \in \mathbb{Z}$ such that $a x+b y=1$.
(c) Use the above to give a different proof of the following theorem you proved in the last homework:
Suppose a and b are positive integers with $g=\operatorname{gcd}(a, b), \operatorname{prove} \operatorname{gcd}(a / g, b / g)=1$.
2. Suppose that a and b are relatively prime, prove that if $m \in \mathbb{Z}$ and $a \mid m b$ then $a \mid m$. (Hint: There is a very nice and easy way to do this.)
3. In each case determine if the Diophantine equation has a solution. If it does find two solutions.
(a) $21284 x+354756 y=68$
(b) $25704 x+249288 y=25$
