Math 370 Number Theory Assignment \# 1

1. Prove that if a is a positive integer then $\operatorname{gcd}(a, 0)=a$ (Don't use the Euclidian Algorithm since this result is needed to prove the Euclidian Algorithm is sound).
2. Suppose d is a common divisor to a and b. Prove that $d \mid(m a+n b)$ for all $m, n \in \mathbb{Z}$.
3. Suppose a and b are positive integers with $g=\operatorname{gcd}(a, b), \operatorname{prove} \operatorname{gcd}(a / g, b / g)=1$.
4. For each of the following a and b find the unique q and r such that $a=q \cdot b+r$ and $0 \leq r<b$.
(a) $a=12321, b=121$
(b) $a=-12321, b=121$
(c) $a=621243, b=1211$
(d) $a=-621243, b=1211$
(e) $a=6660, b=555$
(f) $a=-6660, b=555$
5. Prove the division algorithm holds when $a \leq 0$. That is prove that if $a \in \mathbb{Z}$ with $a \leq 0$ and $b \in \mathbb{N}$ then there exist unique $q, r \in \mathbb{Z}$ such that $a=q \cdot b+r$ and $0 \leq r<b$.
6. Show there is no infinite and strictly decreasing sequence of non-negative integers.
