Math 370 Number Theory Assignment \# 3

1. Prove that if $a, b, c \in \mathbb{Z}$ such that $a \mid b$ and $b \mid c$ then $a \mid c$. (This is a simple but useful result that I meant to have you do earlier but forgot and we might have even used it already).
2. Suppose that $a, b \in \mathbb{Z}$ and aren't both 0 and $g=\operatorname{gcd}(a, b)$. Show that if d is a common divisor of a and b if and only if $d \mid g$.
3. Like in chapter 7 , let $\mathbb{E}=\{\ldots,-4,-2,0,2,4, \ldots\}$.
(a) Write down the first 10 "primes" (positive elements in \mathbb{E} that are not the product of two elements in \mathbb{E}.)
(b) Make a conjecture about when a number is an element of \mathbb{E} is prime. (Hint: There is a very simple condition.)
(c) Prove this conjecture.
4. (a) Prove that $2 \mid n(n+1)$ for all $n \in \mathbb{N}$.
(b) Prove by induction that $6 \mid n\left(n^{2}+5\right)$ for all $n \in \mathbb{N}$.
5. Factor the number 97881827. (Hint: all the prime factors are less than 300 so don't panic).
6. Find $\operatorname{lcm}(47146968,37146096)$ using the Euclidian algorithm.
