Math 370 Number Theory Assignment \# 11

1. Suppose $a, b \in \mathbb{N}$ be odd and $m \in \mathbb{Z}$. Show that:

$$
\left(\frac{m}{a b}\right)=\left(\frac{m}{a}\right)\left(\frac{m}{b}\right)
$$

2. Suppose $n \in \mathbb{N}$ be odd. Show (Hint: Use induction on the number of primes in the factorization of $n)$:
(a)

$$
\left(\frac{-1}{n}\right)=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 1 & (\bmod 4) \\
-1 & \text { if } n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

(b)

$$
\left(\frac{2}{n}\right)= \begin{cases}1 & \text { if } n \equiv 1 \text { or }-1 \quad(\bmod 8) \\ -1 & \text { if } n \equiv 3 \text { or } 5 \quad(\bmod 8)\end{cases}
$$

3. (a) Let $n \in \mathbb{N}$ be an odd such that $5 \not \backslash n$. Find a formula for $\left(\frac{5}{n}\right)$ that involves what n is congruent to $\bmod 5$.
(b) If p is and odd prime. What must its final digit be for 5 to be a QR $\bmod \mathrm{p}$?
(c) If m is a perfect square and $5 \nmid m$ what are the possibilities for $m \bmod 5$?
(d) If m is a perfect square and $5 \nmid m$ what are the possibilities for the last digit of m ?
(e) If m is a perfect square what are the possibilities for the last digit of m ?
