Math 370 Number Theory Assignment \# 7

1. For this problem do not use prime factorization. They first couple should look familiar to you.
(a) Suppose that $k, m, n \in \mathbb{N}$ such that $\operatorname{gcd}(m, n)=1$. Let $a=\operatorname{gcd}(k, m)$ and $b=\operatorname{gcd}(k, n)$ and $k \mid m n$. Show that:
i. $\operatorname{gcd}(a, b)=1$.
ii. $a b \mid k$.
iii. Show that $k \mid a b$ and hence $\mathrm{k}=\mathrm{ab}$. (Hint: Use Bézout's theorem for both a and b).
(b) Show if m, n are relatively prime natural numbers then $k \mid m n$ if and only if $k=a b$ where $a \mid m$ and $b \mid n$ and $\operatorname{gcd}(a, b)=1$.
(c) Show that σ is multiplicative.
2. Continuing on with the last problem:
(a) Show if $n_{1}, \ldots n_{r}$ are pairwise relatively prime then $k \mid n_{1} n_{2} \ldots n_{r}$ if and only if $k=a_{1} a_{2} \ldots a_{r}$ where $a_{i} \mid n_{i}$ and $a_{1}, a_{2}, \ldots a_{r}$ are pairwise relatively prime.
(b) Suppose $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{r}^{\alpha_{r}}$ with $1 \leq \alpha_{i}$ and p_{i} prime, is the unique prime factorization of n. Show that $a \mid n$ if and only if $a=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \ldots p_{r}^{\beta_{r}}$ where $0 \leq \beta_{i} \leq \alpha_{i}$. This shows that the unique factorization of a must included only primes in the factorization on n and must have smaller (or equal) powers of each of those primes.
3. Let p be an odd prime and $a \in \mathbb{Z}$ with $p \nmid a$. Show that if $x^{2}=a(\bmod p)$ has a solution, then it has exactly 2 solutions. (Hint let b be a solution and then show there will be exactly 2).
