Math 370 Number Theory Assignment # 7

- 1. For this problem do not use prime factorization. They first couple should look familiar to you.
 - (a) Suppose that $k, m, n \in \mathbb{N}$ such that gcd(m, n) = 1. Let a = gcd(k, m) and b = gcd(k, n) and k|mn. Show that :
 - i. gcd(a, b) = 1.
 - ii. ab|k.
 - iii. Show that k|ab and hence k=ab. (Hint: Use Bézout's theorem for both a and b).
 - (b) Show if m, n are relatively prime natural numbers then k|mn if and only if k = ab where a|m and b|n and gcd(a, b) = 1.
 - (c) Show that σ is multiplicative.
- 2. Continuing on with the last problem:
 - (a) Show if $n_1, \ldots n_r$ are pairwise relatively prime then $k | n_1 n_2 \ldots n_r$ if and only if $k = a_1 a_2 \ldots a_r$ where $a_i | n_i$ and $a_1, a_2, \ldots a_r$ are pairwise relatively prime.
 - (b) Suppose $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ with $1 \leq \alpha_i$ and p_i prime, is the unique prime factorization of n. Show that a|n if and only if $a = p_1^{\beta_1} p_2^{\beta_2} \dots p_r^{\beta_r}$ where $0 \leq \beta_i \leq \alpha_i$. This shows that the unique factorization of a must included only primes in the factorization on n and must have smaller (or equal) powers of each of those primes.
- 3. Let p be an odd prime and $a \in \mathbb{Z}$ with $p \not| a$. Show that if $x^2 = a \pmod{p}$ has a solution, then it has exactly 2 solutions. (Hint let b be a solution and then show there will be exactly 2).