Math 370 Number Theory Assignment # 4

- 1. Let $m \in \mathbb{N}$. Show that $\equiv \pmod{m}$ is an equivalence relation. Hence show:
 - (a) That it is reflective, that is show that for all $a \in \mathbb{Z}$, $a \equiv a \pmod{m}$.
 - (b) That it is symmetric, that is show that for all $a, b \in \mathbb{Z}$ if $a \equiv b \pmod{m}$ then $b \equiv a \pmod{m}$.
 - (c) That it is transitive, that is show for all $a, b, c \in \mathbb{Z}$, if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ then $a \equiv c \pmod{m}$.
- 2. Consider the congruence equation:

$$627111x \equiv 9145 \pmod{2538239}.$$

- (a) How many non-congruent solutions does this equation have?
- (b) If there are any solutions, find the first three positive solutions.
- 3. For each of the following find $a^{-1} \pmod{m}$ or explain why it doesn't exist.
 - (a) a = 431262, m = 205715369
 - (b) a = 47, m = 2160992
- 4. Suppose that $a, k \in \mathbb{Z}$ and $m \in \mathbb{N}$ and gcd(a, m) = 1 and gcd(k, m) = 1. Show that if $ak \equiv b \pmod{m}$ then gcd(b, m) = 1.