Additional Problem Assignment 6

Please do each of these problems on a separate sheet of paper, but not necessarily for each part of a problem.

- 1. Consider the group D_4 . Check the so called "Socks and Shoes" Property. But checking the following:
 - (a) $(HV)^{-1} = V^{-1}H^{-1}$
 - (b) $(R_{90}D)^{-1} = D^{-1}R_{90}^{-1}$
- 2. (a) Show that for all $n \in \mathbb{N}$, $n 1 \in U(n)$.
 - (b) Show that n-1 is its own inverse in U(n).
- 3. (a) Show if $M_1 = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$ and $M_2 = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$ then $\det(M_1M_2) = \det(M_1) \det(M_2)$.
 - (b) Use the previous part to show that if $M \in GL(2, \mathbb{R})$ then $\det(M^{-1}) = \frac{1}{\det M}$.
- 4. Suppose $H = \{ M \in GL(2, \mathbb{R}) : \det M \in \mathbb{Q} \}.$
 - (a) Find an element of H that is not in $GL(2,\mathbb{Q})$ (i.e. $H \not\subseteq GL(2,\mathbb{Q})$).
 - (b) Show H is a subgroup of $GL(2, \mathbb{R})$.