Additional Problem Assignment 6

Please do each of these problems on a separate sheet of paper, but not necessarily for each part of a problem.

1. Consider the group D_{4}. Check the so called "Socks and Shoes" Property. But checking the following:
(a) $(H V)^{-1}=V^{-1} H^{-1}$
(b) $\left(R_{90} D\right)^{-1}=D^{-1} R_{90}^{-1}$
2. (a) Show that for all $n \in \mathbb{N}, n-1 \in U(n)$.
(b) Show that $n-1$ is its own inverse in $U(n)$.
3. (a) Show if $M_{1}=\left[\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right]$ and $M_{2}=\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right]$ then $\operatorname{det}\left(M_{1} M_{2}\right)=\operatorname{det}\left(M_{1}\right) \operatorname{det}\left(M_{2}\right)$.
(b) Use the previous part to show that if $M \in G L(2, \mathbb{R})$ then $\operatorname{det}\left(M^{-1}\right)=\frac{1}{\operatorname{det} M}$.
4. Suppose $H=\{M \in G L(2, \mathbb{R}): \operatorname{det} M \in \mathbb{Q}\}$.
(a) Find an element of H that is not in $G L(2, \mathbb{Q})$ (i.e. $H \nsubseteq G L(2, \mathbb{Q})$).
(b) Show H is a subgroup of $G L(2, \mathbb{R})$.
