Additional Group Problems Assignment 13

1. Here is common logic error that I am seeing. This is an error that I think students are taught is correct in high school so it is very important that we see it is wrong. Suppose you are asked to show that $m^{3}+1$ and m^{2} are relatively prime. Below is an incorrect solution that uses bad logic.

Solution: It is enough to show that there exists $k, l \in \mathbb{Z}$ such that $k \cdot\left(m^{3}+1\right)+l \cdot m^{2}=1$. We will show that $k=1$ and $l=-m$ works. To see this note that:

$$
\begin{array}{rlrl}
& & k \cdot\left(m^{3}+1\right)+l \cdot m^{2} & =1 \\
\Rightarrow & (1) \cdot\left(m^{3}+1\right)+(-m) \cdot m^{2} & =1 \\
\Rightarrow & & \left(m^{3}+1\right)-m^{3} & =1 \\
\Rightarrow & 1 & =1
\end{array} .
$$

Thus we have show $m^{3}+1$ and m^{2} are relatively prime, which is what we wanted to show.
(a) Explain why the above solution is wrong!
(b) Fix the above proof.

