Additional Problem Assignment 3

Please do each of these problems on a separate sheet of paper, but not necessarily for each part of a problem.

For these problems let $\mathcal{M}=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{Z}\right\}$, that is the set of 2×2 matrices with integer entries. In each of the cases below you may assume without proof that the given binary operator is indeed a binary operator.

1. In Example 6, the book explains that $<M,+>$ is a group where, + is regular matrix addition. That is:

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right]+\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right] .
$$

(a) Calculate:

$$
\left[\begin{array}{cc}
7 & -2 \\
5 & 1
\end{array}\right]+\left[\begin{array}{cc}
4 & 3 \\
-3 & 5
\end{array}\right]
$$

(b) Using the fact that regular integer addition is associative to show that matrix addition is associative (in this 2×2 case).
2. Define a binary operation \oplus_{1} on \mathcal{M} by:

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] \oplus_{1}\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1}+d_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+a_{2}
\end{array}\right] .
$$

(a) Is \oplus_{1} associative on \mathcal{M} ? Prove or find a counter example.
(b) Does \oplus_{1} have an identity on \mathcal{M} ? (Of course this involves a (possible short) proof).
(c) Is $\left\langle\mathcal{M}, \oplus_{1}\right\rangle$ a group? Either prove it is or show that one of the axioms fail.
3. Define a binary operation \oplus_{2} on \mathcal{M} by:

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] \oplus_{2}\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]=\left[\begin{array}{cc}
a_{1}+a_{2} & b_{1} \\
c_{2} & d_{1}+d_{2}
\end{array}\right] .
$$

(a) Is \oplus_{2} associative on \mathcal{M} ? Prove or find a counter example.
(b) Does \oplus_{2} have an identity on \mathcal{M} ?
(c) Is $\left\langle\mathcal{M}, \oplus_{2}\right\rangle$ a group? Either prove it is or show that one of the axioms fail.
4. Define a binary operation \oplus_{3} on \mathcal{M} by:

$$
\left[\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right] \oplus_{3}\left[\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right]=\left[\begin{array}{ll}
a_{1}+d_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right] .
$$

(a) Is \oplus_{3} associative on \mathcal{M} ? Prove or find a counter example.
(b) Does \oplus_{3} have an identity on \mathcal{M} ?
(c) Is $\left\langle\mathcal{M}, \oplus_{3}\right\rangle$ a group? Either prove it is or show that one of the axioms fail.
5. Let $\mathcal{M}^{\prime}=\left\{\left[\begin{array}{cc}a & 2 \\ -1 & d\end{array}\right]: a, d \in \mathbb{Z}\right\}$ be a subset of \mathcal{M}. Show that $\left\langle\mathcal{M}^{\prime}, \oplus_{2}\right\rangle$ is a group (Hint: Do you need to show that \oplus_{2} is associative on \mathcal{M}^{\prime} given that you already showed in for the larger set \mathcal{M} ?).

