Additional Group Problems Assignment 25

- 1. Show the quaternion group Q_8 is not isomorphic to D_4 and thus there are at least two (and in fact only two) non-abelian groups of order 8.
- 2. Let R be a ring let $M_2(R) = \left\{ \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} : a, b, c, d \in R \right\}.$
 - (a) Show the distributive law holds on $M_2(R)$ (and hence it is a ring since the other axioms are easy to see given what we have done already). That is show that if $A, B, C \in M_2(R)$ then A(B+C) = AB + AC.
 - (b) Show that if R is a ring with unity then so is $M_2(R)$.
- 3. Consider the field \mathbb{Z}_p , for a prime p. For $A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} \in M_2(\mathbb{Z}_p)$ let $\det(A) = a_1a_4 a_2a_3$ (calculated in \mathbb{Z}_p of course).
 - (a) Suppose A is such that $det(A) \neq 0$, show that

$$A^{-1} = (\det(A)^{-1}) \begin{bmatrix} a_4 & -a_2 \\ -a_3 & a_1 \end{bmatrix}$$

is the multiplicative inverse of A in $M_2(\mathbb{Z}_p)$. (Note: $\det(A)^{-1}$ is the multiplicative inverse of $\det(A)$ in \mathbb{Z}_p and $-a_2$ is the additive inverse in \mathbb{Z}_p .

- (b) Let $A = \begin{bmatrix} 3 & 4 \\ 2 & 6 \end{bmatrix}$. Find the inverse of A where A is an element of: i. $M_2(\mathbb{Z}_7)$ ii. $M_2(\mathbb{Z}_{11})$
- 4. Suppose R is a ring with unity. Show U(R), the set of units in R (the is elements with a multiplicative inverses) forms a group under the multiplication of R.