Additional Group Problems Assignment 25

1. Show the quaternion group Q_{8} is not isomorphic to D_{4} and thus there are at least two (and in fact only two) non-abelian groups of order 8.
2. Let R be a ring let $M_{2}(R)=\left\{\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right]: a, b, c, d \in R\right\}$.
(a) Show the distributive law holds on $M_{2}(R)$ (and hence it is a ring since the other axioms are easy to see given what we have done already). That is show that if $A, B, C \in M_{2}(R)$ then $A(B+C)=A B+A C$.
(b) Show that if R is a ring with unity then so is $M_{2}(R)$.
3. Consider the field \mathbb{Z}_{p}, for a prime p. For $A=\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right] \in M_{2}\left(\mathbb{Z}_{p}\right)$ let $\operatorname{det}(A)=a_{1} a_{4}-a_{2} a_{3}$ (calculated in \mathbb{Z}_{p} of course).
(a) Suppose A is such that $\operatorname{det}(A) \neq 0$, show that

$$
A^{-1}=\left(\operatorname{det}(A)^{-1}\right)\left[\begin{array}{cc}
a_{4} & -a_{2} \\
-a_{3} & a_{1}
\end{array}\right]
$$

is the multiplicative inverse of A in $M_{2}\left(\mathbb{Z}_{p}\right)$. (Note: $\operatorname{det}(A)^{-1}$ is the multiplicative inverse of $\operatorname{det}(A)$ in \mathbb{Z}_{p} and $-a_{2}$ is the additive inverse in \mathbb{Z}_{p}.
(b) Let $A=\left[\begin{array}{ll}3 & 4 \\ 2 & 6\end{array}\right]$. Find the inverse of A where A is an element of:
i. $M_{2}\left(\mathbb{Z}_{7}\right)$
ii. $M_{2}\left(\mathbb{Z}_{11}\right)$
4. Suppose R is a ring with unity. Show $U(R)$, the set of units in R (the is elements with a multiplicative inverses) forms a group under the multiplication of R.

