Additional Group Problems Assignment 10

- 1. Consider the group $U(2^m)$ for $m \in \mathbb{N}$ and $m \geq 3$.
 - (a) Show that $2^{m-1} + 1$ is in $U(2^m)$.
 - (b) Show that $|2^{m-1} + 1| = 2$ in $U(2^m)$.
 - (c) Find a different element of $U(2^m)$ that is of order 2. Hint: Look at old homework questions.
 - (d) Show that $U(2^m)$ is not cyclic.
- 2. Show there is no group with exactly two elements of order 2. (Hint: Suppose there are two such elements and show there must be at least one more. Remember though the group may not be abelian. Play with it and don't give up.)
- 3. (a) Find all subgroups of the cyclic group \mathbb{Z}_{12} (under addition).
 - (b) Show that \mathbb{Z}_{13}^* (under multiplication) is cyclic, by showing 2 is a generator.
 - (c) Find all subgroups of \mathbb{Z}_{13}^* .
 - (d) Do you see a similarity between these two groups?