Additional Problem Assignment 1

1. Remember that if a, b are integers (i.e. if $a, b \in \mathbb{Z}$) then a is said to divide b (written $a \mid b$) if there exists $k \in \mathbb{Z}$ such that $b=a \cdot k$.
(a) Show that $a \mid a$ for all $a \in \mathbb{Z}$.
(b) Show that if $a, b, c \in \mathbb{Z}$ and $a \mid b$ then $a \mid b c$.
(c) Show that if $a, b, c \in \mathbb{Z}$ and if $a \mid b$ and $b \mid c$ then $a \mid c$.
(d) Show that if $a, b, d, r, s \in \mathbb{Z}$ and if $d \mid a$ and $d \mid b$ then $d \mid a r+b s$.
2. Suppose A, B, C are sets. Give the definition of what it means that $A \subseteq B$ that is A is a subset of B.
3. Show by mathmeatical induction for all $n \in \mathbb{N}, 2^{n}>n$. Remember that $N=\{1,2,3, \ldots\}$ is the set of natural numbers.
