Additional Problem Assignment 1

- 1. Remember that if a, b are integers (i.e. if $a, b \in \mathbb{Z}$) then a is said to divide b (written a|b) if there exists $k \in \mathbb{Z}$ such that $b = a \cdot k$.
 - (a) Show that a|a for all $a \in \mathbb{Z}$.
 - (b) Show that if $a, b, c \in \mathbb{Z}$ and a|b then a|bc.
 - (c) Show that if $a, b, c \in \mathbb{Z}$ and if a|b and b|c then a|c.
 - (d) Show that if $a, b, d, r, s \in \mathbb{Z}$ and if d|a and d|b then d|ar + bs.
- 2. Suppose A, B, C are sets. Give the definition of what it means that $A \subseteq B$ that is A is a subset of B.
- 3. Show by mathematical induction for all $n \in \mathbb{N}$, $2^n > n$. Remember that $N = \{1, 2, 3, ...\}$ is the set of natural numbers.